quadric equation - traduction vers russe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

quadric equation - traduction vers russe

LOCUS OF ZEROS OF A QUADRATIC POLYNOMIAL (AFFINE OR PROJECTIVE, NOT NECESSARILY REAL)
Quadric surface; Quadric (projective geometry); Quadric (Projective Geometry); Quadratic surface; Quadric hypersurface; Hyperbolic quadric; Quadric cone; Quadratic hypersurface; Quadrics

quadric equation      

общая лексика

уравнение 2-й степени

математика

квадратное уравнение

quadratic hypersurface         

математика

гиперповерхность второго порядка

quadric surface         

математика

поверхность второго порядка

квадрика

Définition

Quadric
·adj Of or pertaining to the second degree.
II. Quadric ·noun A quantic of the second degree. ·see Quantic.
III. Quadric ·noun A surface whose equation in three variables is of the second degree. Spheres, spheroids, ellipsoids, paraboloids, hyperboloids, also cones and cylinders with circular bases, are quadrics.

Wikipédia

Quadric

In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas). It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections. When the defining polynomial is not absolutely irreducible, the zero set is generally not considered a quadric, although it is often called a degenerate quadric or a reducible quadric.

In coordinates x1, x2, ..., xD+1, the general quadric is thus defined by the algebraic equation

i , j = 1 D + 1 x i Q i j x j + i = 1 D + 1 P i x i + R = 0 {\displaystyle \sum _{i,j=1}^{D+1}x_{i}Q_{ij}x_{j}+\sum _{i=1}^{D+1}P_{i}x_{i}+R=0}

which may be compactly written in vector and matrix notation as:

x Q x T + P x T + R = 0 {\displaystyle xQx^{\mathrm {T} }+Px^{\mathrm {T} }+R=0\,}

where x = (x1, x2, ..., xD+1) is a row vector, xT is the transpose of x (a column vector), Q is a (D + 1) × (D + 1) matrix and P is a (D + 1)-dimensional row vector and R a scalar constant. The values Q, P and R are often taken to be over real numbers or complex numbers, but a quadric may be defined over any field.

A quadric is an affine algebraic variety, or, if it is reducible, an affine algebraic set. Quadrics may also be defined in projective spaces; see § Normal form of projective quadrics, below.

Traduction de &#39quadric equation&#39 en Russe